Comment by COGlory
2 years ago
1) Isonet - takes low SNR cryo-electron tomography images (that are extremely dose limited, so just incredibly blurry and frequently useless) and does two things:
* Deconvolutes some image aberrations and "de-noises" the images
* Compensates for missing wedge artifacts (missing wedge is the fact that the tomography isn't done -90° --> +90°, but usually instead -60° --> +60°, leaving a 30° wedge on the top and bottom of basically no information) which usually are some sort of directionality in image density. So if you have a sphere, the top and bottom will be extremely noisy and stretched up and down (in Z).
https://www.biorxiv.org/content/10.1101/2021.07.17.452128v1
2) Topaz, but topaz really counts as 2 or 3 different algorithms. Topaz has denoising of tomograms and of flat micrographs (i.e. images taken with a microscope, as opposed to 3D tomogram volumes). That denoising is helpful because it increases contrast (which is the fundamental problem in Cryo-EM for looking at biomolecules). Topaz also has a deep learning particle picker which is good at finding views of your protein that are under-represented, or otherwise missing, which again, normally results in artifacts when you build your 3D structure.
https://emgweb.nysbc.org/topaz.html
3) EMAN2 convolutional neural network for tomogram segmentation/Amira CNN for segmentation/flavor of the week CNN for tomogram segmentation. Basically, we can get a 3D volume of a cell or virus or whatever, but then they are noisy. To do anything worthwhile with it, even after denoising, we have to say "this is cell membrane, this is virus, this is nucleic acid" etc. CNNs have proven to be substantially better at doing this (provided you have an adequate "ground truth") than most users.
No comments yet
Contribute on Hacker News ↗