← Back to context

Comment by lmeyerov

1 year ago

The last point is spot on... Pandas on GPUs (cudf) gets you both the perf + usability, without having to deal with issues common to stack/array languages (k) and lazy languages (dask, polars). My flow is pandas -> cudf -> dask cudf , spark, etc.

More recently, we have been working on GFQL with users at places like banks (graph dataframe query language), where we translate down to tools like pandas & cudf. A big "aha" is that columnar operations are great -- not far from what array languages focus on -- and having a static/dynamic query planner so optimizations around that helps once you hit memory limits. Eg, dask has dynamic DFS reuse of partitions as part of its work stealing. More SQL-y tools like Spark may make plans like that ahead of time. In contrast, that lands more on the user if they stick with pandas or k, eg, manual tiling.