Comment by colanderman
4 days ago
Yes a similar analysis is where the above expression f²RC²V² comes from.
Essentially -- (and I'm probably missing a factor of 2 or 3 somewhere as I'm on my phone and don't have reference materials) -- in an adiabatic circuit the unavoidable power loss for any individual transistor stems from current (I) flowing through that transistor's channel (a resistor R) on its way to and from another transistor's gate (a capacitor C). So that's I²R unavoidable power dissipation.
I must be sufficient to fill and then discharge the capacitor to/from operating voltage (V) in the time of one cycle (1/f). So I=2fCV. Substituting this gives 4f²RC²V².
Compare to traditional CMOS, wherein the gate capacitance C is charged through R from a voltage source V. It can be shown that this dissipates ½CV² of energy though the resistor in the process, and the capacitor is filled with an equal amount of energy. Discharging then dissipates this energy through the same resistor. Repeat this every cycle for a total power usage of fCV².
Divide these two figures and we find that adiabatic circuits use 4fRC times as much energy as traditional CMOS. However, f must be less than about 1/(5RC) for a CMOS circuit to function at all (else the capacitors don't charge sufficiently during a cycle) so this is always power savings in favor of adiabatics. And notably, decreasing f of an adiabatic circuit from the maximum permissible for CMOS on the same process increases the efficiency gain proportionally.
(N.B., I feel like I missed a factor of 2 somewhere as this analysis differs slightly from my memory. I'll return with corrections if I find an error.)
No comments yet
Contribute on Hacker News ↗