← Back to context

Comment by andyferris

3 days ago

I agree this doesn't gel well with the pop-science approach.

However, it is actually a similar approach to how De Broglie, Schrodinger, and others originally came up with their equations for quantum behavior - we start with special relativity and consider how a wave _must_ behave if its properties are going to be frame-independent, and follow the math from there. That part is equation (*), and the article leads with a bit of an analogy of how we might build a fully classical implemenation of it in an experiment (strings, possibly attached to a stiff rubber sheet) so we get some everyday intuition into the equation's behavior. So from my point of view, I found it very interesting.

(What the article doesn't really get into is why certain fields might have S=0 and others not, what the intuition for the cause of that is, etc. It also presupposes you have bought into quantum field theory in the first place, and wish to consider the fundamental "wavicles" that would emerge from certain field equations, and that you aren't looking closely at the EM force or spin or any other number of things normally encountered before learning about the weak force).