← Back to context

Comment by macNchz

15 hours ago

I've used embeddings to define clusters, then passed sampled documents from each cluster to an LLM to create labels for each grouping. I had pretty impressive results from this approach when creating a category/subcategory labels for a collection of texts I worked on recently.

That's interesting, it sounds a bit like those cluster graph visualisation techniques. Unfortunately, my texts seem to fall into clusters that really don't match the ones that I had hoped to get out of these methods. I guess it's just a matter of fine-tuning now.