Comment by somenameforme
1 day ago
It's interesting how much the nature of LLMs fundamentally being self recursive next token predictors aligns with the Chinese Room experiment. [1] In such experiment it also makes perfect sense that a single wrong response would cascade into a series of subsequent ever more drifting errors. I think it all emphasizes the relevance of the otherwise unqualifiable concept of 'understanding.'
In many ways this issue could make the Chinese Room thought experiment even more compelling. Because it's a very practical and inescapable issue.
I don't think the Chinese room thought experiment is about this, or performance of LLMs in general. Searle explicitly argues that a program can't induce "understanding" even if it mimicked human understanding perfectly because programs don't have "causal powers" to generate "mental states".
This is mentioned in the Wikipedia page too: "Although its proponents originally presented the argument in reaction to statements of artificial intelligence (AI) researchers, it is not an argument against the goals of mainstream AI research because it does not show a limit in the amount of intelligent behavior a machine can display."
Great comment on the Chinese room. That idea seems to be dismissed nowadays but the concept of “cascading failure to understand context” is absolutely relevant to LLMs. I often find myself needing to explain basic details over and over again to an LLM; when with a person it would be a five second, “no, I mean like this way, not that way” explanation.