← Back to context

Comment by IvanK_net

18 days ago

I am confused. If a single-tape turing machine receives a digit N in binary, and is supposed to write N ones on the tape, on the right side of the digit N, it performs N steps.

If you expect N ones at the output, how can this machine be simulated in the space smaller than N?

This machine must decrement the digit N at the beginning of the tape, and move to the end of the tape to write "1", so it runs in time O(N^2), not O(N)? (as it takes N "trips" to the end of the tape, and each "trip" takes 1, 2, 3 .. N steps)

Since turing machines can not jump to any place on a tape in constant time (like computers can), does it have any impact on real computers?

Multitape Turing machines are far more powerful (in terms of how fast they can run, not computability) than single-tape machines.

But to answer your question: "space" here refers to working space, excluding the input and output.

This paper looks exclusively at decision problems, i.e. problems where the output is a single bit.

EDIT: This makes sense because if you look at all problems with N outputs then that is just the same as "gluing together" N different decision problems (+ some epsilon of overhead)