Comment by porridgeraisin
6 days ago
Yes.
I made the mistake of procrastinating on one part of a project thinking "Oh, that is easily LLMable". By God, was I proven wrong. Was quite the rush before the deadline.
On the flip side, I'm happy I don't have to write the code for a matplotlib scatterplot for the 10000th time, it mostly gets the variables in the current scope that I intended to plot. But I've really not had that much success on larger tasks.
The "information retrieval" part of the tech is beautiful though. Hallucinations are avoided only if you provide an information bank in the context in my experience. If it needs to use the search tool itself, it's not as good.
Personally, I haven't seen any improvement from the "RLd on math problems" models onward (I don't care for benchmarks). However, I agree that deepseek-r1-zero was a cool result. Pure RL (plain R1 used a few examples) automatically leading to longer responses.
A lot of the improvements suggested in this thread are related to the infra around LLMs such as tool use. These are much more well organised these days with MCP and what not, enabling you to provide it the aforementioned information bank easily. But all of it is built on top of the same fragile next-token generator we know and love.
No comments yet
Contribute on Hacker News ↗