Comment by NitpickLawyer
14 hours ago
Appreciate the insights, but I think failing hardware is the least of their problems. In that underwater pod trial, MS saw lower failure rates than expected (nitrogen atmosphere could be a key factor there).
> The company only lost six of the 855 submerged servers versus the eight servers that needed replacement (from the total of 135) on the parallel experiment Microsoft ran on land. It equates to a 0.7% loss in the sea versus 5.9% on land.
6/855 servers over 6 years is nothing. You'd simply re-launch the whole thing in 6 years (with advances in hardware anyways) and you'd call it a day. Just route around the bad servers. Add a bit more redundancy in your scheme. Plan for 10% to fail.
That being said, it's a complete bonkers proposal until they figure out the big problems, like cooling, power, and so on.
Indeed, MS had it easier with a huge, readily available cooling reservoir and a layer of water that additionally protects (a little) against cosmic rays, plus the whole thing had to be heavy enough to sink. An orbital datacenter would be in a opposite situation: all cooling is radiative, many more high-energy particles, and the weight should be as light as possible.
> In that underwater pod trial, MS saw lower failure rates than expected
Underwater pods are the polar opposite of space in terms of failure risks. They don't require a rocket launch to get there, and they further insulate the servers from radiation compared to operating on the surface of the Earth, rather than increasing exposure.
(Also, much easier to cool.)
The biggest difference is radiation. Even in LEO, you will get radiation-caused Single Events that will affect the hardware. That could be a small error or a destructive error, depending on what gets hit.
Power is solar and cooling is radiators. They did the math on it, its feasible and mostly an engineering problem now.
Power!? Isnt that just PV and batteries? LEO has like 1.5h orbit.
As mentioned in the article the Starcloud design requires solar arrays that are ~2x more efficient than those deployed on the ISS. Simply scaling them up introduces more drag and weight problems as do the batteries needed to suffice for the 45 minutes of darkness the satellite will receive.
It's a Datacenter... I guess solar is what they're planning to use, but the array will be so large it'll have its own gravity well
All mass has gravity
2 replies →