Comment by fastball
2 days ago
The fundamental disagreement here is (in my opinion) on what needs to be encouraged. If what you say is true and renewables are cheaper anyway, then also as you say capitalism should in out and that's what we will use in the near term anyway. So shouldn't we be investing more now on the things that you think are 10-20 years out, in order to accelerate them?
Becuase I'm interested in the future. The math with wind and solar checks out if all you care about is current energy needs. But we've already achieved most of the efficiency we can with at least PV. Even in a hypothetical future where you have some sort of quantum PV panels using MEG, your best possible hope is only 3x current efficiencies. But again, I'm more interested in our long-term future. Nuclear (fission and fusion) have much more unbounded potential than wind and solar.
Back to cost, the numbers in the article you link are cherry-picked. They rely on deploying solar to "the sunniest regions in the world" to get that performance. Most of the world is not the sunniest, unfortunately. Beyond that, the corn fields and insane amounts of empty space you mention are generally not co-located with areas of high power usage, making transmission another factor (which is doubly a factor since PV is such low-voltage that you require significant transformer infrastructure in order to step things up for transmission). So I strongly disagree, land usage is absolutely still an issue. There are also externalities caused by covering huge swathes of land with PV panels.
And it would need to be huge swathes of land, because in case it wasn't clear I would like to see humanity have huge amounts of power at our disposal – significantly more than we are using today. My back of the napkin map is that it would take 50,000 km2 of solar to accommodate current US energy needs. But I'd like to 100x our energy supply. That would require 5m km2, which is half the entire land area of the USA.
And honestly, I'm still skeptical of the price difference. PV needs lots of things (transformers, transmission, storage, disposal, land use, etc) that are frequently not priced in. Meanwhile the numbers quoted for nuclear fission reactors are frequently absolutely all in, including the cost of decommissioning the reactor at some indeterminate point in the future and pre-allocating funds for disposal.
tl;dr – your right that solar/wind is already quite cost effective and moving rapidly on its own pace just fine. So if anything needs collective support to me it is nuclear which has potential for the future that solar/wind just lacks.
> I'd like to 100x our energy supply
I kind of see where you're coming from now. However, I don't particularly care about 100x'ing our future at the moment. For right now, I care about solving the existential risk of climate change - lets get to 1x as carbon free as possible, as quickly as possible. And at present the quickest and cheapest way to do that is solar/wind + battery. Any dollar diverted from solar/etc right now to "go full nuclear" delays our progress against decarbonization.
Once we are out of the danger zone we can talk about our 100x future, and sure build nukes for that if you want, sounds great. Perhaps given 20 years of investment we can make them competitive, like we did for solar.
>And honestly, I'm still skeptical of the price difference. PV needs lots of things (transformers, transmission, storage, disposal, land use, etc) that are frequently not priced in.
You should be less skeptical.
With a LCOE difference of 5x there is more than a little wiggle room to price in extra storage and transmission costs and still end up way cheaper.
That is how every kilowatt hour generated with solar and wind, stored with power2gas (the most expensive form of storage) and used on a cold, windless night still ends up being cheaper than nuclear power generated on a sunny, windy day.
Nuclear power survives exclusively because of its relationship with the military industrial complex. Thats why it gets deluged with lavish subsidies, that's most governments only want a few and that's why the governments who build them either have a bomb or want the ability to build one in a hurry (e.g. Iran who joined this club a long time ago or Poland who joined recently).
Where are you getting a LCOE diff of 5x? The latest Lazard's is 2x.
Transmission costs will require more than "wiggle room" if you are sending power from some cornfield in middle America to Seattle.
Also a big question in my mind is "where can the price go from here". I don't imagine there is a huge amount of room left for optimization of solar, where as with nuclear I think almost everyone agrees that it is about as expensive as it could be. There is infinite room to improve the economies of scale and unit economics of nuclear; not so much for solar.
Lazard says utility solar and onshore wind is ~$40 per MWh while nuclear power is ~$200.
Offshore wind is more like $70, but also has double the capacity factor, so requires less matching storage.
We've been told for about 3 decades that any day soon microreactors/thorium/fusion will lead to cheaper, safer nuclear power and no doubt for the next 3 decades some people will continue to believe.
1 reply →