Comment by danabramov
3 days ago
This is a great question! I’m still not very experienced so take it with a grain of salt. But here’s my take on it.
I’ve been spending time with Lean quite a bit for the past few months. When I look at a proof, I don’t “read” it the same way as I do with programming. It feels a bit more like “scanning”. What stands out is the overall structure of the argument, what tactics are used, and what lemmas are used.
In real Lean code, the accepted style is to indent any new goals, work on one goal at a time (except a few special parallel tactics), and outdent when the goal is done. That’s what I mean by the “shape” of the argument. See some examples in this PR I’m working on: https://github.com/gaearon/analysis-solutions/pull/7/files
Once you’re familiar with what tactics do, you can infer a lot more. For example `intro` steps into quantifiers and “eats” assumptions, if I see `constructor` I know it’s breaking apart the goal into multiple, and so on.
Keep in mind that in reality all tactics do is aid you in producing a tree of terms. As in, actually the proofs are all tree-shaped. It’s even possible to write them that way directly. Tactics are more like a set of macros and DSL for writing that tree very concisely. So when I look at some tactics (constructor, use, refine, intro), I really see tree manipulation (“we’re splitting pieces, we’re filling in this part before that part, etc”).
However, it’s still different from reading code in the sense that I’d need to click into the middle to know for sure what assertion a line is dealing with. How much this is a problem I’m not sure.
In a well-written proof with a good idea, you can often retrace the shape of the argument by reading because the flow of thought is similar to a paper proof. So someone who wants to communicate what they’re doing is generally able to by choosing reasonable names, clear flow of the argument, appropriate tactics and — importantly! — extracting smaller lemmas for non-obvious results. Or even inline expressions that state hypotheses clearly before supplying a few lines of proof. On the other hand, there are cases where the proof is obvious to a human but the machine struggles and you have to write some boilerplate to grind through it. Those are sometimes solved by more powerful tactics, but sometimes you just have to write the whole thing. And in that case I don’t necessarily aim for it being “understandable” but for it being short. Lean users call that golfing. Golfed code has a specific flavor to it. Again in my experience golfing is used when a part of the proof would be obvious on paper (so a mathematician wouldn’t want to see 30 lines of code dedicated to that part), or when Lean itself is uniquely able to cut through some tedious argument.
So to summarize, I feel like a lot of it is implicit, there are techniques to make it more explicit when the author wants, it doesn’t matter as much as I expected it would, and generally as your mental model of tactics improves, you’ll be able to read Lean code more fluidly without clicking. Also, often all you need to understand the argument is to overview the names of the lemmas it depends on. Whereas the specific order doesn’t matter because there’s a dozen way to restructure it without changing the substance.
No comments yet
Contribute on Hacker News ↗