← Back to context

Comment by canyon289

7 days ago

Im a research person building models so I can't answer your questions well (save for one part)

That is, as a research person using our GPUs and TPUs I see first hand how choices from the high level python level, through Jax, down to the TPU architecture all work together to make training and inference efficient. You can see a bit of that in the gif on the front page of the book. https://jax-ml.github.io/scaling-book/

I also see how sometimes bad choices by me can make things inefficient. Luckily for me if my code/models are running slow I can ping colleagues who are able to debug at both a depth and speed that is quite incredible.

And because were on HN I want to preemptively call out my positive bias for Google! It's a privilege to be able to see all this technology first hand, work with great people, and do my best to ship this at scale across the globe.