← Back to context

Comment by tarruda

2 days ago

> It’s tightly integrated into the token sampling infrastructure, and is what ollama builds upon for their json schema functionality.

Do you mean the functionality of generating ebnf grammar and from a json schema use it for sampling is part of ggml, and all they have to do is use it?

I assumed that this was part of llama.cpp, and another feature they have to re-implement and maintain.

The whole point of GBNF is to serve as part of the API that lets downstream applications control token sampling in a high-level way without having to drop to raw logit distributions or pull model-specific tricks.

Ollama has a hardcoded GBNF grammar to force generic json output for example, the code is here: https://github.com/ollama/ollama/blob/da09488fbfc437c55a94bc...

Ollama can also turn user-passed json schema into a more tightly specified GBNF grammar, the code is here and is a bit harder to understand: https://github.com/ollama/ollama/blob/da09488fbfc437c55a94bc...

This thread was about doing structured generation in a model-agnostic way without wrapping try/except around json.parse(), and GBNF is _the_ way to do that.