Comment by ants_everywhere
20 hours ago
It's standard to set the null hypothesis to be a measure zero set (e.g. mu = 0 or mu1 = mu2). So the probability of the null hypothesis is 0 and the only question remaining is whether your measurement is good enough to detect that.
But even though you know the measurement can't be exactly 0.000 (with infinitely many decimal places) a priori, you don't know if your measurement is any good a priori or whether you're measuring the right thing.
The probability is only zero a.s., it's not zero. That's a very big difference. And hypothesis tests aren't estimating the probability of the null being true, they're estimating the probability of rejecting the null if the null was true.