Comment by yongjik
21 hours ago
As a supporter of nuclear, I think most nuclear supporters will be happy if we achieve carbon neutrality by any means.
But as other commenters pointed out, renewables are not achieving that in most places. According to Google, a staunchly anti-nuclear Germany has 6.95 tons per capita at 2023. France achieved that at 1986 (!!) and is now at 4.14.
It's really a question that should be directed at renewables: "If renewables are so cheap and fast to deploy, how come 39 years after Chernobyl, Germany still cannot get below France in CO2 emission?"
> It's really a question that should be directed at renewables: "If renewables are so cheap and fast to deploy, how come 39 years after Chernobyl, Germany still cannot get below France in CO2 emission?"
Because renewables and storage have only been produced at the scale and price required to achieve this for the last 5 years. [1]
The following article "Solar electricity every hour of every day is here and it changes everything"[2] is an interesting demonstration of how solar + batteries is pushing other generation sources to the periphery in most of the world.
Edit: Here is some more data for Brazil and the UK showing a large increase in solar over the last 5 years [3][4]
1. https://ember-energy.org/latest-insights/solar-power-continu...
2. https://ember-energy.org/latest-insights/solar-electricity-e...
3. https://ember-energy.org/latest-insights/wind-and-solar-gene...
4.https://ember-energy.org/latest-insights/a-record-year-for-b...
just looked at 2, using their own numbers, and it says 97% to 24/365, in a sunny area (Las Vegas), which is like an outage 43 minutes out of every day (24 * 0.03 * 60).
That's not what many would consider as 24/365, and certainly not "every hour of every day".
That's greater uptime than your average coal (85%), nuclear (91%) or gas (95%) power plants... https://www.nrdc.org/bio/rachel-fakhry/myth-247365-power-pla...
This, like normal power plant outages, is fine because in reality the entirety of your power does not come from one specific place, from a specific type of power. Instead we load balance over different places using the grid, and energy sources. It's much much rarer to have an extended period of cloud cover and no wind than an extended period of cloud cover, and an extended period without wind. Compound that with "over the entire electrical grid" and it doesn't happen.
And as a worst case version where the geographical and types-of-power constraints exist... e.g. if you're planning an off grid facility which is too small to justify wind power... backup generators exist.
1 reply →
The report mentions this:
> Las Vegas can reach 97% of the way to 1 GW constant supply.
My take away from the report is not that 24/365 is achieveable everywhere, but how solar + batteries is rapidly dropping in price and is now cheaper with other forms of generation, which will result in solar + batteries making up the majority of generation on the grid.
> In a sunny city like Las Vegas, the estimated Levelised Cost of Electricity (LCOE) at this 97% benchmark is $104/MWh. This is already 22% lower than the $132/MWh estimate based on global average capital costs of solar and battery a year earlier. It is also more cost-effective than coal in many regions ($118/MWh) and far cheaper than nuclear ($182/MWh).
1 reply →
If we got to 97% and use gas backups or whatever, we have already clearly won.
The point is that a very mundane setup with small storage is nearly enough to create a flat baseload of electricity.
We both know that neither supply nor demand is that flat.
In reality we can also trivially add wind power, existing hydro, gas turbines ran on carbon neutral fuel etc. to the mix.
How will you force this house that is self-sufficient 97% of the time to buy extremely expensive nuclear powered electricity to not crater the capacity factor of the nuclear plant?
Because fast to deploy in theory fights quickly with permitting systems and NIMBYism. You need more permits, because a typical solar or wind farm doesn't come close to a nuclear plan's output, so the per-project bureaucracy multiplies. By needing more places, you also have more groups opposing projects for typical NIMBY reasons. You need battery facilities too, and more updates to the grid to deal with having less inertia, and the updates cost money, and the battery facilities themselves face more NIMBYism: Minimum distances to places where people live and such. So when you put it all together, slow bureaucracies just move at glacial paces, and the equipment you would have bought when you sent out the permit is already different than what you want to use when the permitting is approved.
Then we have the tariffs, as Europe puts tariffs on Chinese equipment that change the price quite a bit.
A country that took this very seriously and decided to put renewables as a top priority could go quite fast. But if there's anything one should learn about the last few decades is that modern democracies care too much about vested interest and NIMBY complaints to actually get projects like this done. Just look at charts showing power waiting to go online in most countries: You'll find very long lines, even after dealing with the rest of the the bureaucratic gauntlet.
Quote: The winters in Germany are often colder and the country's climate is generally more continental. The south of France enjoys warmer Mediterranean temperatures and milder winters.