← Back to context

Comment by edanm

14 hours ago

> My mental model is that what is called RAG can either be:

RAG is confusing, because if you look at the words making up the acronym RAG, it seems like it could be either of the things you mentioned. But it originally referred to a specific technique of embeddings + vector search - this was the way it was used in the ML article that defined the term, and this is the way most people in the industry actually use the term.\

It annoys me, because I think it should refer to all techniques of augmenting, but in practice it's often not used that way.

There are reasons that specifically make the "embeddings" idea special - namely, it's a relatively new technique that actually fits LLM very well, because it's a semantic search - meaning, it works on "the same input" as LLMs do, which is a free-text query. (As opposed to a traditional lookups that work on keyword search or similar.)

As for whether RAG is dead - if you mean specifically vector-embeddings and semantic search, it's possible - because you could theoretically use other techniques for augmentation, e.g. an agent that understands a user question about a codebase and uses grep/find/etc to look for the information, or composes a search to search the internet for something. But it's definitely not going to die in that second sense of "we need some way to augment LLMs knowledge before text generation", that will probably always be relevant, as you say.