Comment by jodrellblank
5 hours ago
> "4. Prolog is good at solving reasoning problems."
Plain Prolog's way of solving reasoning problems is effectively:
for person in [martha, brian, sarah, tyrone]:
if timmy.parent == person:
print "solved!"
You hard code some options, write a logical condition with placeholders, and Prolog brute-forces every option in every placeholder. It doesn't do reasoning.
Arguably it lets a human express reasoning problems better than other languages by letting you write high level code in a declarative way, instead of allocating memory and choosing data types and initializing linked lists and so on, so you can focus on the reasoning, but that is no benefit to an LLM which can output any language as easily as any other. And that might have been nice compared to Pascal in 1975, it's not so different to modern garbage collected high level scripting languages. Arguably Python or JavaScript will benefit an LLM most because there are so many training examples inside it, compared to almost any other langauge.
Its a Horn clause resolver...that's exactly the kind of reasoning that LLMs are bad at. I have no idea how to graft Prolog to an LLM but if you can graft any programming language to it, you can graft Prolog more easily.
Also, that you push Python and JavaScript makes me think you don't know many languages. Those are terrible languages to try to graft to anything. Just because you only know those 2 languages doesn't make them good choices for something like this. Learn a real language Physicist.
We would begin by having a Prolog server of some kind (I have no idea if Prolog is parallelized but it should very well be if we're dealing with Horn Clauses).
There would be MCP bindings to said server, which would be accessible upon request. The LLM would provide a message, it could even formulate Prolog statements per a structured prompt, and then await the result, and then continue.
Prolog was introduced to capture natural language - in a logic/symbolic way that didn't prove as powerful as today's LLM for sure, but this still means there is a large corpus of direct English to Prolog mappings available for training, and also the mapping rules are much more straightforward by design. You can pretty much translate simple sentences 1:1 into Prolog clauses as in the classic boring example
This is being taken advantage of in Prolog code generation using LLMs. In the Quantum Prolog example, the LLM is also instructed not to generate search strategies/algorithms but just planning domain representation and action clauses for changing those domain state clauses which is natural enough in vanilla Prolog.
The results are quite a bit more powerful, close to end user problems, and upward in the food chain compared to the usual LLM coding tasks for Python and JavaScript such as boilerplate code generation and similarly idiosyncratic problems.
What makes you think your brain isn't also brute forcing potential solutions subconciously and only surfacing the useful results?
Because I can solve problems that would take the age of the universe to brute force, without waiting the age of the universe. So can you: start counting at 1, increment the counter up to 10^8000, then print the counter value.
Prolog: 1, 2, 3, 4, 5 ...
You and me instantly: 10^8000
There's a whole lot of undecidable (or effectively undecidable) edge cases that can be adequately covered. As a matter of fact, Decidability Logic is compatible with Prolog.
Can you try calculating 101 * 70 in your head?
I can absolutely try this. Doesn't mean i'll solve it. If i solve it there's no guarantee i'll be correct. Math gets way harder when i don't have a legitimate need to do it. This falls in the "no legit need" so my mind went right to "100 * 70, good enough."
Very easy to solve, just like it is easy to solve many other ones once you know the tricks.
I recommend this book: https://www.amazon.com/Secrets-Mental-Math-Mathemagicians-Ca...
2 replies →
I think therefore I am calculator?
Um, that's really easy to do in your head, there's no carrying or anything? 7,070
7 * 101 = 707 * 10 = 7,070
And computers don't brute-force multiplication either, so I'm not sure how this is relevant to the comment above?
4 replies →
human brains are insanely powerful pattern matching and shortcut-taking machines. There's very little brute forcing going on.
Your second sentence contradicts your first.
1 reply →
Just intuition ;)
Of course it does "reasoning", what do you think reasoning is? From a quick google: "the action of thinking about something in a logical, sensible way". Prolog searches through a space of logical proposition (constraints) and finds conditions that lead to solutions (if one exists).
(a) Trying adding another 100 or 1000 interlocking proposition to your problem. It will find solutions or tell you one doesn't exist. (b) You can verify the solutions yourself. You don't get that with imperative descriptions of problems. (b) Good luck sandboxing Python or JavaScript with the treat of prompt injection still unsolved.
Of course it doesn't "do reasoning", why do you think "following the instructions you gave it in the stupidest way imaginable" is 'obviously' reasoning? I think one definition of reasoning is being able to come up with any better-than-brute-force thing that you haven't been explicitly told to use on this problem.
Prolog isn't "thinking". Not about anything, not about your problem, your code, its implementation, or any background knowledge. Prolog cannot reason that your problem is isomorphic to another problem with a known solution. It cannot come up with an expression transform that hasn't been hard-coded into the interpreter which would reduce the amount of work involved in getting to a solution. It cannot look at your code, reason about it, and make a logical leap over some of the code without executing it (in a way that hasn't been hard-coded into it by the programmer/implementer). It cannot reason that your problem would be better solved with SLG resolution (tabling) instead of SLD resolution (depth first search). The point of my example being pseudo-Python was to make it clear that plain Prolog (meaning no constraint solver, no metaprogramming), is not reasoning. It's no more reasoning than that Python loop is reasoning.
If you ask me to find the largest Prime number between 1 and 1000, I might think to skip even numbers, I might think to search down from 1000 instead of up from 1. I might not come up with a good strategy but I will reason about the problem. Prolog will not. You code what it will do, and it will slavishly do what you coded. If you code counting 1-1000 it will do that. If you code Sieve of Eratosthenes it will do that instead.
The disagreement you have with the person you are relying to just boils down to a difference in the definition of "reasoning."
Its a Horn clause interpreter. Maybe lookup what that is before commenting on it. Clearly you don't have a good grasp of Computer Science concepts or math based upon your comments here. You also don't seem to understand the AI/ML definition of reasoning (which is based in formal logic, much like Prolog itself).
Python and Prolog are based upon completely different kinds of math. The only thing they share is that they are both Turing complete. But being Turing complete isn't a strong or complete mathematical definition of a programming language. This is especially true for Prolog which is very different from other languages, especially Python. You shouldn't even think of Prolog as a programming language, think of it as a type of logic system (or solver).
Everything you've written here is an invalid over-reduction, I presume because you aren't terribly well versed with Prolog. Your simplification is not only outright erroneous in a few places, but essentially excludes every single facet of Prolog that makes it a turing complete logic language. What you are essentially presenting Prolog as would be like presenting C as a language where all you can do is perform operations on constants, not even being able to define functions or preprocessor macros. To assert that's what C is would be completely and obviously ludicrous, but not so many people are familiar enough with Prolog or its underlying formalisms to call you out on this.
Firstly, we must set one thing straight: Prolog definitionally does reasoning. Formal reasoning. This isn't debatable, it's a simple fact. It implements resolution (a computationally friendly inference rule over computationally-friendly logical clauses) that's sound and refutation complete, and made practical through unification. Your example is not even remotely close to how Prolog actually works, and excludes much of the extra-logical aspects that Prolog implements. Stripping it of any of this effectively changes the language beyond recognition.
> Plain Prolog's way of solving reasoning problems is effectively:
No. There is no cognate to what you wrote anywhere in how Prolog works. What you have here doesn't even qualify as a forward chaining system, though that's what it's closest to given it's somewhat how top-down systems work with their ruleset. For it to even approach a weaker forward chaining system like CLIPS, that would have to be a list of rules which require arbitrary computation and may mutate the list of rules it's operating on. A simple iteration over a list testing for conditions doesn't even remotely cut it, and again that's still not Prolog even if we switch to a top-down approach by enabling tabling.
> You hard code some options
A Prolog knowledgebase is not hardcoded.
> write a logical condition with placeholders
A horn clause is not a "logical condition", and those "placeholders" are just normal variables.
> and Prolog brute-forces every option in every placeholder.
Absolutely not. It traverses a graph proving things, and when it cannot prove something it backtracks and tries a different route, or otherwise fails. This is of course without getting into impure Prolog, or the extra-logical aspects it implements. It's a fundamentally different foundation of computation which is entirely geared towards formal reasoning.
> And that might have been nice compared to Pascal in 1975, it's not so different to modern garbage collected high level scripting languages.
It is extremely different, and the only reason you believe this is because you don't understand Prolog in the slightest, as indicated by the unsoundness of essentially everything you wrote. Prolog is as different from something like Javascript as a neural network with memory is.
Even in your example (which is obviously not correct representation of prolog), that code will work X orders magnitude faster and with 100% reliability compared to much more inferior LLM reasoning capabilities.
This is not the point though
Algorithmically there's nothing wrong with using BFS/DFS to do reasoning as long as the logic is correct and the search space is constrained sufficiently. The hard part has always been doing the constraining, which LLMs seem to be rather good at.
> This is not the point though
could you expand what is the point? That authors opinion without much justification is that this is not reasoning?