Comment by spacedcowboy
5 hours ago
The number of times I might want to write something in C and have it less likely to crash absolutely dwarfs the number of times I care about that code being cross-platform.
Sure, cross-platform is desirable, if there's no cost involved, and mandatory if you actually need it, but it's a "nice to have" most of the time, not a "needs this".
As for mutex overheads, yep, that's annoying, but really, how annoying ? Modern CPUs are fast. Very very fast. Personally I'm far more likely to use an os_unfair_lock_t than a pthread_mutex_t (see the previous point) which minimizes the locking to a memory barrier, but even if locking were slow, I think I'd prefer safe.
Rust is, I'm sure, great. It's not something I'm personally interested in getting involved with, but it's not necessary for C (or even this extra header) to do everything that Rust can do, for it to be an improvement on what is available.
There's simply too much out there written in C to say "just use Rust, or Swift, or ..." - too many libraries, too many resources, too many tutorials, etc. You pays your money and takes your choice.
That’s all reasonable, but here’s one of the primary motivations from the post:
> We love its raw speed, its direct connection to the metal
If this is a strong motivating factor (versus, say, refactoring risk), then C’s lack of safe zero-cost abstractions is a valid concern.
> As for mutex overheads, yep, that's annoying, but really, how annoying ?
For this use-case, you might not notice. ISTR, when examing the pthreads source code for some platform, that mutexes only do a context switch as a fallback, if the lock cannot be acquired.
So, for most use-cases of this header, you should not see any performance impact. You'll see some bloat, to be sure.