← Back to context

Comment by tpurves

2 days ago

What you are describing has been proposed before, for example within context of projects like Breakthrough Starshot. In that the case the idea is to launch thousands of probes, each weighing only a few grams or less, and accelerating them to an appreciable fraction of the speed of light using solar sails and (powerful) earth-based lasers. The probes could reach alpha centauri within 20-30 years. There seems to be some debate though about whether cross-links between probes to enable relaying signals is ever practical from a power and mass perspective vs a single very large receiver on earth.

Indeed. I think the main reason to send thousands of probes is increasing the odds that they will survive the trip and also be in the right position to gather usable data to transmit back.

Also once you have created the infrastructure of hundreds or thousands of very powerful lasers to accelerate the tiny probes to incredibel speeds, sending many probes instead of a few doesn't add much to the cost anyway.

  • Sun as a focus lens. "Just" 500 AU.

    The Voyager can be overtaken in several years if we to launch today a probe with nuclear reactor powered ionic thruster - all the existing today tech - which can get to 100-200km/s in 2-3 stages (and if we stretch the technology a bit into tomorrow, we can get 10x that).

    • For anyone interested, this is approximately the wait/walk dilemma, specifically the interstellar travel subset: https://en.wikipedia.org/wiki/Wait/walk_dilemma#Interstellar...

      I was listening to an old edition of the Fraser Cain weekly question/answer podcast earlier where he described this exact thing. I think he said that someone has run the numbers in the context of human survivable travel to nearby stars and on how long we should wait and the conclusion was that we should wait about 600 years.

      Any craft for human transport to a nearby star system that we launch within the next 600 years will probably be overtaken before arrival at the target star system by ships launched after them.

      3 replies →

What these proposals like to forget (even if addressing everything else) is that you need to slow down once you arrive if you want to have any time at all for useful observation once you reach your destination.

What's the point of reaching alpha centauri in 30 years if you're gonna zip past everything interesting in seconds? Will the sensors we can cram on tiny probes even be able to capture useful data at all under these conditions?

  • Jupiter is 43 lightminutes from the Sun.

    If we shoot a thousand probes at 0.1c directly at the Alpha Centauri star, they should have several hours within a Jupiter-distance range of the star to capture data. Seems like enough sensors and time to synthesize an interesting image of the system when all that data gets back to Earth.

  • Could the probe just fire off some mass when it got there?

    • Any mass that it fires would have a starting velocity equal to that of the probe, and would need to be accelerated an equal velocity in the opposite direction. It would be a smaller mass, so it would require less fuel than decelerating the whole probe; but it's still a hard problem.

      Be careful with the word "just". It often makes something hard sound simple.

      3 replies →

If I don't recall wrongly, Breakthrough Starshot was not a means for commnunicaiton relay as he describes.

  • It wasn't intended for a communications relay, but it was intended to have 2-way communication. I went down a rabbit hole reading ArXiv papers about it. Despite their tiny size, the probes could phone home with a smaller laser - according to the papers I read, spinning the photons a certain way would differentiate them from other photons, and we apparently have the equipment to detect and pick up those photons. The point of the communication would be for them to send back data and close-up images of the Alpha C system. Likewise, they could receive commands from earth by having dozens of probes effectively act as an interferometry array.