← Back to context

Comment by adrian_b

15 hours ago

The elements heavier than iron are not formed by fusion because of the asymmetry in the initial conditions.

The Universe that we can see has started from a mixture of equal amounts of free neutrons and protons (at a temperature of a few tens of MeV, matter has the simplest possible structure, consisting of free neutrons, free protons, free electrons, free positrons, photons and various kinds of neutrinos; upon cooling, nuclei form, then positrons annihilate, then atoms form), which have formed in the beginning hydrogen, helium and some lithium. Then, through fusion, the next elements until iron have been generated.

Iron is not the last element generated, a few elements after it have also been generated by fusion, because while they have lower binding energies than iron, their binding energies are still greater than of the lighter elements that can fuse into them.

However after the peak of the iron, the abundance of the following elements generated by fusion drops very quickly, e.g. down to germanium that is about 8 thousand times less abundant than iron.

The elements heavier than germanium are produced only in negligible amounts by fusion. They are produced mostly by neutron capture and sometimes by proton capture, and such events happen mostly during supernova explosions or neutron star collisions, because only then high concentrations of neutrons with high energies are present.

Neutron capture produces elements with Z until 100, i.e. until fermium (after that, spontaneous fission happens too fast, before beta-decay can raise the Z and enough extra neutrons can be captured to form a nucleus with long enough half-life). However the half-life of the heaviest elements decreases very quickly with Z, so the elements heavier than plutonium usually decay before reaching a stellar system from the explosion that has generated them. At its formation, it is likely that Earth also contained plutonium (244Pu has a half-life of over 80 million years, enough to survive an interstellar journey), but it has completely decayed until now, leaving uranium as the heaviest primordial element on Earth.