← Back to context

Comment by asa400

3 days ago

I wholeheartedly concur based on my experience with Rust (and other languages) over the last ~7 or so years.

> If I call a function which returns an object of type T, I can safely assume the object lasts forever. It cannot be mutated by any other code (since its mine). And I'm not going to break anything else if I mutate the object myself. These are really nice properties to have when programming at scale.

I rarely see this mentioned in the way that you did, and I'll try to paraphrase it in my own way: Rust restricts what you can do as a programmer. One can say it is "less powerful" than C. In exchange for giving up some power, it gives you more information: who owns an object, what other callers can do with that object, the lifetime of that object in relation to other objects. And critically, in safe Rust, these are _guarantees_, which is the essence of real abstraction.

In large and/or complicated codebases, this kind of information is critical in languages without garbage garbage collection, but even when I program in languages with garbage collection, I find myself wanting this information. Who is seeing this object? What do they know about this object, and when? What can they do with it? How is this ownership flowing through the system?

Most languages have little/no language-level notion of these concepts. Most languages only enforce that types line up nominally (or implement some name-identified interface), or the visibility of identifiers (public/private, i.e. "information hiding" in OO parlance). I feel like Rust is one of the first languages on this path of providing real program dataflow information. I'm confident there will be future languages that will further explore providing the programmer with this kind of information, or at least making it possible to answer these kinds of questions easier.

> I rarely see this mentioned in the way that you did, and I'll try to paraphrase it in my own way: Rust restricts what you can do as a programmer. One can say it is "less powerful" than C. In exchange for giving up some power, it gives you more information

Your paraphrasing reminds me a bit of structured vs. unstructured programming (i.e., unrestricted goto). Like to what you said, structured programming is "less powerful" than unrestricted goto, but in return, it's much easier to follow and reason about a program's control flow.

At the risk of simplifying things too much, I think some other things you said make for an interesting way to sum this up - Rust does for "ownership flow"/"dataflow" what structured programming did for control flow.

  • I really like this analogy. In a sense, C restricts what you can do compared to programming directly in assembly. Like, there's a lot of programs you can write in assembly that you can't write in the same way in C. But those restrictions also constrain all the other code in your program. And that's a wonderful thing, because it makes it much easier to make large, complex programs.

    The restrictions seem a bit silly to list out because we take them for granted so much. But its things like:

    - When a function is called, execution starts at the top of the function's body.

    - Outside of unions, variables can't change their type halfway through a program.

    - Whenever a function is called, the parameters are always passed using the system calling convention.

    - Functions return to the line right after their call site.

    Rust takes this a little bit further, adding more restrictions. Things like "if you have a mutable reference to to a variable, there are no immutable references to that variable."