← Back to context

Comment by dwohnitmok

2 hours ago

This is not necessarily true. It is possible for all real numbers (and indeed all mathematical objects) to be definable under ZFC. It is also possible for that not to be the case. ZFC is mum on the issue.

I've commented on this several times. Here's the most recent one: https://news.ycombinator.com/item?id=44366342

Basically you can't do a standard countability argument because you can't enumerate definable objects because you can't uniformly define "definability." The naive definition falls prey to Liar's Paradox type problems.