Comment by lmeyerov
17 hours ago
Yep -- one fun experiment early in the video is showing sonnet 4.5 -> opus 4.5 gave a 20% lift
We do a bit of model-per-task, like most calls are sending targeted & limited context fetches into faster higher-tier models (frontier but no heavy reasoning tokens), and occasional larger data dumps (logs/dataframes) sent into faster-and-cheaper models. Commercially, we're steering folks right now more to openai / azure openai models, but that's not at all inherent. OpenAI, Claude, and Gemini can all be made to perform well here using what the talk goes over.
Some of the discussion earlyish in the talk and Q&A after is on making OSS models production-grade for these kinds of investigation tasks. I find them fun to learn on and encourage homelab experiments, and for copilots, you can get mileage. For more heavy production efforts, I typically do not recommend them for most teams at this time for quality, speed, practicality, and budget reasons if they have the option to go with frontier models. However, some bigger shops are doing it, and I'd be happy to chat how we're approaching quality/speed/cost there (and we're looking for partners on making this easier for everyone!)
Nice! Thank you!
I just did an experiment yesterday with Opus 4.5 just operating in agent mode in vscode copilot. Handed it a live STS session for AWS to see if it could help us troubleshoot an issue. It was pretty remarkable seeing it chop down the problem space and arrive at an accurate answer in just a few mins.
I'll definitely check out the video later. Thanks!