← Back to context

Comment by qudat

1 day ago

My take is that a huge part of human intelligence is pattern matching. We just didn’t understand how much multidimensional geometry influenced our matches

Yes, it could be that intelligence is essentially a sophisticated form of recursive, brute force pattern matching.

I'm beginning to think the Bitter Lesson applies to organic intelligence as well, because basic pattern matching can be implemented relatively simply using very basic mathematical operations like multiply and accumulate, and so it can scale with massive parallelization of relatively simple building blocks.

  • Intelligence is almost certainly a fundamentally recursive process.

    The ability to think about your own thinking over and over as deeply as needed is where all the magic happens. Counterfactual reasoning occurs every time you pop a mental stack frame. By augmenting our stack with external tools (paper, computers, etc.), we can extend this process as far as it needs to go.

    LLMs start to look a lot more capable when you put them into recursive loops with feedback from the environment. A trillion tokens worth of "what if..." can be expended without touching a single token in the caller's context. This can happen at every level as many times as needed if we're using proper recursive machinery. The theoretical scaling around this is extremely favorable.

I don't think it's accurate to describe LLMs as pattern matching. Prediction is the mechanism they use to ingest and output information, and they end up with a (relatively) deep model of the world under the hood.

  • The "pattern matching" perspective is true if you zoom in close enough, just like "protein reactions in water" is true for brains. But if you zoom out you see both humans and LLMs interact with external environments which provide opportunity for novel exploration. The true source of originality is not inside but in the environment. Making it be all about the model inside is a mistake, what matters more than the model is the data loop and solution space being explored.

  • > I don't think it's accurate to describe LLMs as pattern matching

    I’m talking about the inference step, which uses tensor geometry arithmetic to find patterns in text. We don’t understand what those patterns are but it’s clear it’s doing some heavy lifting since llm inference is expressing logic and reasoning under the guise of our reductive “next token prediction”

  • "Pattern matching" is not sufficiently specified here for us to say if LLMs do pattern matching or not. E.g. we can say that an LLM predicts the next token because that token (or rather, its embedding) is the best "match" to the previous tokens, which form a path ("pattern") in embedding space. In this sense LLMs are most definitely pattern matching. Under other formulations of the term, they may not be (e.g. when pattern matching refers to abstraction or abstracting to actual logical patterns, rather than strictly semantic patterns).

  • Yes, the world model building is achieved via pattern matching and happens during ingestion and training, but that is also part of the intelligence.

Intelligence is hallucination that happens to produce useful results in the real world.