Comment by Paracompact
15 hours ago
Indeed. Your sets are decreasing periodic of density always greater than the product from k=1 to infinity of (1-(1/3)^k), which is about 0.56, yet their intersection is null.
This would all be a fairly trivial exercise in diagonalization if such a lemma as implied by Deepseek existed.
(Edit: The bounding I suggested may not be precise at each level, but it is asymptotically the limit of the sequence of densities, so up to some epsilon it demonstrates the desired counterexample.)
No comments yet
Contribute on Hacker News ↗