← Back to context

Comment by empiricus

1 month ago

Hi, thanks for the recommendations. I looked a little at the book, basically at the end we can compute some properties for small molecules sitting alone in space? What about arbitrary molecules, interacting? Or computing reaction rates? In a solvent? My understanding is that there are some algorithms for all of these, and there is probably progress made, but I never seen (online) anyone complaining that we cannot compute even this basic chemistry. I feel like we should care more about this problem.

From my understanding, accurate simulations at the electron level (post Hartree Fock / DFT) are currently limited to 100 atoms (on a gpu cluster this can take hours or days). Maybe this can be pushed to 1000 atoms with aggressive optimization techniques like FMM.

So at this level of simulation it is currently only possible to simulate one medium size molecule or the interaction of a few small ones.

To simulate larger systems, it is necessary to work at a (semi-)classical level of abstraction that approximates quantum mechanics. For example using molecular dynamics to essentially simulate a fluid with a ball and springs model. In this case, electron level simulation can still be useful for deriving heuristics (conceptually, the spring tension).

I completely agree that it’s interesting to investigate how far the electron level simulation can be pushed.