← Back to context

Comment by gerdesj

2 hours ago

"stress" (in engineering terms) has a particular meaning and is not a generic term. It is not really a synonym for "forces" or "what makes other stuff break"!

Let's look at just the downward forces:

I need some quick figures 1 - an early Boeing 747: 330 tonnes (metric) fully loaded and 160 tonnes empty. A tonne is 1000 Kg.

According to 2: 240 feet per minute vertical is a hard landing which about 1.2m/s. 60 - 180 is considered ideal, so let's go for about 150fpm which is about 0.7m/s.

We have to estimate the maximum downward force on take off. At the point of just before lift off, the plane has rotated to say, let's say 45 degrees, and its engines are delivering enough force and its wings are delivering enough force to push it into the air. Surely at take off, that vertical force is simply the weight of the aircraft, which has remained the same all the time. It doesn't suddenly push down harder than its weight, that's just what it feels like for a passenger.

So let's allow our jet to be empty on landing and also let the acceleration due to gravity be 10m/s/s

So what is the instantaneous downward force of a mass of 160 tonnes dropping at 0.7 m/s compared to a dead weight load of 330 tonnes. Both are in a gravitational field of 10 m/s/s (or m^s-2).

Now this is where I get a bit lost because force = mass x acceleration and the landing plane is descending at a constant velocity of 0.7 m/s. Mind you, the ascending plane is also ... ascending, or will do but it does not have an instantaneous upward velocity so at wheels off it has a vertical acceleration of zero.

Help!

1 https://measuringly.com/how-much-does-boeing-747-weigh/ 2 https://aviation.stackexchange.com/questions/47422/what-is-t...

Isn’t the acceleration here just the difference in velocity between the plane and the runway so 0.7 m/s/s?

  • IF the velocity would change from 0.7m/s to 0m/s over one second, the acceleration would be 0.7m/s/s. But if the time span over which that velocity change is (much) shorter, the acceleration would be (much) higher.