← Back to context

Comment by spmurrayzzz

5 hours ago

When I've measured this myself, I've never seen a medium-to-long task horizon that would have expert locality such that you wouldn't be hitting the SSD constantly to swap layers (not to say it doesn't exist, just that in the literature and in my own empirics, it doesn't seem to be observed in a way you could rely on it for cache performance).

Over any task that has enough prefill input diversity and a decode phase thats more than a few tokens, its at least intuitive that experts activate nearly uniformly in the aggregate, since they're activated per token. This is why when you do something more than bs=1, you see forward passes light up the whole network.

> hitting the SSD constantly to swap layers

Thing is, people in the local llm community are already doing that to run the largest MoE models, using mmap such that spare-RAM-as-cache is managed automatically by the OS. It's a drag on performance to be sure but still somewhat usable, if you're willing to wait for results. And it unlocks these larger models on what's effectively semi-pro if not true consumer hardware. On the enterprise side, high bandwidth NAND Flash is just around the corner and perfectly suited for storing these large read-only model parameters (no wear and tear issues with the NAND storage) while preserving RAM-like throughput.