Comment by addisonj
4 hours ago
IMO, this isn't entirely a "new world" either, it is just a new domain where the conversation amplifies the opinions even more (weird how that is happening in a lot of places)
What I mean by that: you had compiled vs interpreted languages, you had types vs untyped, testing strategies, all that, at least in some part, was a conversation about the tradeoffs between moving fast/shipping and maintainability.
But it isn't just tech, it is also in methodologies and the words use, from "build fast and break things" and "yagni" to "design patterns" and "abstractions"
As you say, it is a different viewpoint... but my biggest concern with where are as industry is that these are not just "equally valid" viewpoints of how to build software... it is quite literally different stages of software, that, AFAICT, pretty much all successful software has to go through.
Much of my career has been spent in teams at companies with products that are undergoing the transition from "hip app built by scrappy team" to "profitable, reliable software" and it is painful. Going from something where you have 5 people who know all the ins and outs and can fix serious bugs or ship features in a few days to something that has easy clean boundaries to scale to 100 engineers of a wide range of familiarities with the tech, the problem domain, skill levels, and opinions is just really hard. I am not convinced yet that AI will solve the problem, and I am also unsure it doesn't risk making it worse (at least in the short term)
“””
Much of my career has been spent in teams at companies with products that are undergoing the transition from "hip app built by scrappy team" to "profitable, reliable software" and it is painful. Going from something where you have 5 people who know all the ins and outs and can fix serious bugs or ship features in a few days to something that has easy clean boundaries to scale to 100 engineers of a wide range of familiarities with the tech, the problem domain, skill levels, and opinions is just really hard. I am not convinced yet that AI will solve the problem, and I am also unsure it doesn't risk making it worse (at least in the short term)
“””
This perspective is crucial. Scale is the great equalizer / demoralizer, scale of the org and scale of the systems. Systems become complex quickly, and verifiability of correctness and function becomes harder. Companies that built from day with AI and have AI influencing them as they scale, where does complexity begin to run up against the limitations of AI and cause regression? Or if all goes well, amplification?