← Back to context

Comment by matheist

24 days ago

They don't appear to care about the images of the immersions or their complements, aside from them not being related by an isometry of R^3. They're not doing any topology with the image.

In other works, they have two immersions from the torus to R^3, whose induced metric and mean curvature are the same, and whose images are not related by an isometry of R^3. I didn't see anything about the topology of the images per se, that doesn't seem to be the point here.