← Back to context

Comment by brk

7 hours ago

I think this was primarily about speeding up the measurement time. With just two electrodes you had to wait for the device to achieve equilibrium with the material being measured. If the concentration of oxygen on the probe side of the barrier was higher or lower than the material side you would get false measurements, particularly in low oxygen scenarios because you have oxygem trapped in the probe.

By keeping the state of oxygen inside the probe constant and replacing consumed molecules you now can measure almost instantly.

Yes but how do you do that? that magical third electrode sounds harder to make than the original problem.

Edit: I think I get it now, it's a chemical reaction. By applying a voltage with some polarity to the 3rd electrode you can run the reaction in reverse. Still very hard to achieve because you have to make sure the reactions happen at the same rate with the same efficiency, which is far from trivial. This must be a very high end sensor for all this effort to make sense.

  • An oxygen molecule does some chemical reaction on the sensor electrode that releases an electron, maybe it's made of iron and turns into rust. If you supply the same current to another electrode to do the opposite reaction, maybe one made of rust that turns into iron, it balances.

    The sensors must be consumable with a certain lifetime.