Comment by btown
4 hours ago
> This was a clean-room implementation (Claude did not have internet access at any point during its development); it depends only on the Rust standard library. The 100,000-line compiler can build Linux 6.9 on x86, ARM, and RISC-V. It can also compile QEMU, FFmpeg, SQlite, postgres, redis, and has a 99% pass rate on most compiler test suites including the GCC torture test suite. It also passes the developer's ultimate litmus test: it can compile and run Doom.
This is incredible!
But it also speaks to the limitations of these systems: while these agentic systems can do amazing things when automatically-evaluable, robust test suites exist... you hit diminishing returns when you, as a human orchestrator of agentic systems, are making business decisions as fast as the AI can bring them to your attention. And that assumes the AI isn't just making business assumptions with the same lack of context, compounded with motivation to seem self-reliant, that a non-goal-aligned human contractor would have.
Interesting how the concept of a clean room implementation changes when the agent has been trained on the entire internet already
To the best of my knowledge, there's no Rust-based compiler that comes anywhere close to 99% on the GCC torture test suite, or able to compile Doom. So even if it saw the internals of GCC and a lot of other compilers, the ability to recreate this step-by-step in Rust is extremely impressive to me.
The impressiveness of converting C to Rust by any means is kind of contingent on how much unnecessary unsafe there is in the end result though.
1 reply →
Agreed, but the next step is of having an AI agent actually run the business and be able to get the business context it needs as a human would. Obviously we're not quite there, but with the rapid progress on benchmarks like Vending-Bench [0], and especially with this teams approach, it doesn't seem far fetched anymore.
As a particular near-term step, I imagine that it won't be long before we see a SaaS company using an AI product manager, which can spawn agents to directly interview users as they utilize the app, independently propose and (after getting approval) run small product experiments, and come up with validated recommendations for changing the product roadmap. I still remember Tay, and wouldn't give something like that the keys to the kingdom any time soon, but as long as there's a human decision maker at the end, I think that the tech is already here.
[0] https://andonlabs.com/evals/vending-bench-2