Comment by its_so_on

13 years ago

I always wondered why the great people I know can do so much better than having to do A/B testing in their own businesses. Sure they try new things, but they are most certainly not applying an A/B type algorithm.

It seems the article mentions something quite important in their algorithm: mostly do what has the most expected value. The people who are great just have a much better way to judge that. They can make a poster with 20 design choices (or 50 or 100) and make an estimate of what would probably work and what probably wouldn't on each one, from the size of poster, to the font sizes and types, whitespace, where to place different elements, graphics choices, etc etc etc. They certainly include a random aspect, but this is the exception rather than being the norm. Mostly what dictates choices is your expected returns on them, and the random aspects are compared with these.

They do pay exquisite attention to their random choices: "This week I decided to see what would happen if I mixed up the day, date, location, and description rather than have it be in logical order, to see if this engaged people any more" (or: to change any other choice randomly). But it is the exception rather than the norm, and done rarely rather than often. They still pay attention to the results, which helps inform their "expected value" function.

(I didn't spend much time on the article or the linked papers, so please feel free to correct me if I'm misinterpreting. A rigorous algorithm doesn't have much to do with real-world choices, and we are simply nowhere near having an automated web service to write your copy, regardless of how many users get to give feedback on it. So the whole thing isn't very interesting to me, and the above is just my impression of 'why'.)