Comment by TheRealPomax

1 year ago

Fun fact: pi is both the same, and not the same, in all of those places, too.

Because geometry.

If you consider pi to just be a convenient name for a fixed numerical constant based on a particular identity found in Euclidean space, then yes: by definition it's the same everywhere because pi is just an alias for a very specific number.

And that sentence already tells us it's not really a "universal" constant: it's a mathematical constant so it's only constant given some very particular preconditions. In this case, it's only our trusty 3.1415etc given the precondition that we're working in Euclidean space. If someone is doing math based on non-Euclidean spaces they're probably not working with the same pi. In fact, rather than merely being a different value, the pi they're working with might not even be constant, even if in formulae it cancels out as if it were.

As one of those "I got called by the principal because my kid talked back to the teacher, except my kid was right": draw a circle on a sphere. That circle has a curved diameter that is bigger than if you drew it on a flat sheet of paper. The ratio of the circle circumference to its diameter is less than 3.1415etc, so is that a different pi? You bet it is: that's the pi associated with that particular non-Euclidean, closed 2D plane.

So is pi the same everywhere in the universe? Ehhhhhhhh it depends entirely on who's using it =D

In non-euclidean spaces, your definition of pi wouldn't even be a value. It's not well defined because the ratio of circumference to diameter of a circle is dependent on the size of the circle and the curvature inside the circle.

It's probably true that it's only well defined in euclidean space. Your relaxed definition, which I have never seen before, is not very useful.

  • I don't agree, I thought what he said was very interesting. It never occurred to me that pi might vary, and over a non-flat space I can see what they're saying. I think it's intrinsically interesting simply because it breaks one of my preconceptions, that pi is a constant. Talking about it being 'not very useful' just seems far too casually dismissive.

    • Pi doesn't vary. The ratio of circumference to diameter of a circle may vary depending on the geometry. Clearly everyone means euclidean space unless specified otherwise. Any other interpretation will only lead to problems, which is why it's not useful. There is really no ambiguity about this in mathematics. Mathematicians still use the pi symbol as a constant when they compute the circumference of a circle in a given geometry as a function of the radius.

      10 replies →

  • This whole conversation is painful to read:

    1. Your parent was talking about projections from one space to another and getting it confused.

    2. Pi is pi and their non-Euclidean pi is still pi (unless you want to argue that a circle drawn on the earth’s surface has a different value of pi).

    The problem comes down to projections, then all bets are off.

    • Yes. That's what makes it a fun fact. Most people never even learn about non-euclidean math, and this is the kind of "wow I never even thought about this" that people should be able to learn about in a comment thread.

      Calling it painful to read is downright weird. Pi, the constant, has one value, everywhere. So now let's learn about what pi can also be and how that value is not universal.

      3 replies →

Just sounds like you’ve confused yourself. It’s like spinning in circles and acting like no one else knows which way is up.

That isn’t a different pi. That’s a different ratio. Your hint is that there are ways to calculate pi besides the ratio of a circle’s circumference to its diameter. This constant folks have named pi shows up in situations besides Euclidean space.

  • Good job, you completely missed the point where I explain that pi, the constant, is a constant. And that "pi, if considered a ratio" (you know, that thing we did to originally discover pi) is not the same as "pi, the constant".

    Language skills matter in Math just as much as they do in regular discourse. Arguably moreso: how you define something determines what you can then do with it, and that applies to everything from whether "parallel lines can cross" (what?) to whether divergent series can be mapped to a single number (what??) to what value the circle circumference ratio is and whether you can call that pi (you can) and whether that makes sense (less so, but still yes in some cases).

    • I haven’t missed your point. I’ve criticized it.

      You’re treating your non-consensus definition not as a hypothetical, but as a fact. Your comment started with “fun fact”.

Modern mathematics is more likely than not going to define pi as twice the unique zero of cos between 0 and 2, and cos can be defined via its power series or via the exp function (if you use complex numbers). None of this involves geometry whatsoever.

  • What do you mean? Cos is an inherently geometric function.

    • There are many equivalent definitions and many of them do not refer to geometry at all. If you don't want to go through cos you can always define pi as sqrt(6 * sum from 1 to inf 1/n^2).

      2 replies →