Comment by 9dev

1 month ago

Well. We were working on a search engine for industry suppliers since before the whole AI hype started (even applied to YC once), and hit a brick wall at some point were it got too hard to improve search result quality algorithmically. To understand what that means: We gathered lots of data points from different sources, tried to reconcile that into unified records, then find the best match for a given sourcing case based on that. But in a lot of cases, both the data wasn’t accurate enough to identify what a supplier was actually manufacturing, and the sourcing case itself wasn’t properly defined, because users found it too hard to come up with good keywords for their search.

Then, LLMs entered the stage. Suddenly, we became able to both derive vastly better output from the data we got, and also offer our users easier ways to describe what they were looking for, find good keywords automatically, and actually deliver helpful results!

This was only possible because AI augments our product well and really provides a benefit in that niche, something that would just not have been possible otherwise. If you plan on founding a company around AI, the best advice I can give you is to choose a problem that similarly benefits from AI, but does exist without it.

> the data wasn’t accurate enough to identify what a supplier was actually manufacturing

how did the LLM help with that challenge?