Comment by sfifs

7 days ago

Material science is still largely an art consisting of educated guesses, formulation followed by exhaustive (and exhausting) testing of very tiny variations in composition and process. This is mainly because while we have good theoretical frameworks, mathematical techniques and computation capabilities that works angstrom scale downwards (kinda... I think first principles computation of properties of collections of atoms beyond a few light ones is still difficult) or milli scale upwards (think FEM and similar used in mechanical engineering), nano to micro scale where all material properties arise is basically un-computable. Not being someone gifted with intuition of advanced math & calculus that could tackle inventing such, the nature of graduate work in the field did not appeal to me personally. You can see how Semiconductor Fabs & catalyst labs for instance have nevertheless successfully used the systematic exhaustive iterative experimentation approach to deliver massive progress.

Solving for computability of the nano-to-micro scale will absolutely drive a massive transformation in the world much like the industrial and information technology revolutions. Biological revolution i believe requies basically the simila computability to manipulate proteins though there seem to be shortcuts leveraging bacteria. In recent years that I occasionally have seen papers that hint at progress on math and computability at a nano to micro scale. So I'm quite hopeful we'll have massive progress technologically