Comment by godelski

2 days ago

The transformers are initialized by embedding models...

Your embedding model is literally the translation layer converting the text to numbers. The transformers are the main processing unit of the embeddings. You can even see some self-reflection in the model as the transformer is composed of attention and a MLP sub-network. The attention mechanism generates the interrelational dependence of the data and the MLP projects up into a higher dimension before coming down so that this can untangle these relationships. But the idea is that you just repeat this process over and over. The attention mechanism has the benefit over CNN models because it has a larger receptive field, so can better process long range relationships (long range being across the input data) where CNNs bias for local relationships.