Comment by seanhunter

1 day ago

I thought when I first saw the title that it was going to be about the Gaussian integral[1] which has to be one of the coolest results in all of maths.

That is, the integral from - to + infinity of e^(-x^2) dx = sqrt(pi).

I remember being given this as an exercise and just being totally shocked by how beautiful it was as a result (when I eventually managed to work out how to evaluate it).

[1] https://mathworld.wolfram.com/GaussianIntegral.html

Gaussian integrals are also pretty much the basis of quantum field theory in the path integral formalism, where Isserlis's theorem is the analog to Wick's theorem in the operator formalism.

There is a relationship here, in the case of Gauß-Hermite Integration, where the weight function is exactly e^(-x^2) the weights have to add up sqrt(pi), because the integral is exact for the constant 1 polynomial.