Comment by hodgehog11

2 days ago

I keep wondering whether people have actually examined how this work draws its conclusions before citing it.

This is science at its worst, where you start at an inflammatory conclusion and work backwards. There is nothing particularly novel presented here, especially not in the mathematics; obviously performance will degrade on out-of-distribution tasks (and will do so for humans under the same formulation), but the real question is how out-of-distribution a lot of tasks actually are if they can still be solved with CoT. Yes, if you restrict the dataset, then it will perform poorly. But humans already have a pretty large visual dataset to pull from, so what are we comparing to here? How do tiny language models trained on small amounts of data demonstrate fundamental limitations?

I'm eager to see more works showing the limitations of LLM reasoning, both at small and large scale, but this ain't it. Others have already supplied similar critiques, so let's please stop sharing this one around without the grain of salt.

"This is science at its worst, where you start at an inflammatory conclusion and work backwards"

Science starts with a guess and you run experiments to test.

  • True, but the experiments are engineered to give results they want. It's a mathematical certainty that the performance will drop off here, but is not an accurate assessment of what is going on at scale. If you present an appropriately large and well-trained model with in-context patterns, it often does a decent job, even when it isn't trained on them. By nerfing the model (4 layers), the conclusion is foregone.

    I honestly wish this paper actually showed what it claims, since it is a significant open problem to understand CoT reasoning relative to the underlying training set.

    • Without a provable hold out, claim that "large models do fine on unseen patterns" is unfalsifiable. In controlled from scratch training, CoT performance collapses under modest distribution shift, even with plausible chains. If you have results where the transformation family is provably excluded from training and a large model still shows robust CoT, please share them. Otherwise this paper’s claim stands for the regime it tests.

      3 replies →