Comment by hodgehog11

2 days ago

> claim that "large models do fine on unseen patterns" is unfalsifiable

I know what you're saying here, and I know it is primarily a critique of my phrasing, but establishing something like this is the objective of in-context learning theory and mathematical applications of deep learning. It is possible to prove that sufficiently well-trained models will generalize for certain unseen classes of patterns, e.g. transformer acting like gradient descent. There is still a long way to go in the theory---it is difficult research!

> performance collapses under modest distribution shift

The problem is that the notion of "modest" depends on the scale here. With enough varied data and/or enough parameters, what was once out-of-distribution can become in-distribution. The paper is purposely ignorant of this fact. Yes, the claims hold for tiny models, but I don't think anyone ever doubted this.