Comment by ahtihn

15 hours ago

> The emergent phenomenon is that the LLM can separate truth from fiction when you give it a massive amount of data.

I don't believe they can. LLMs have no concept of truth.

What's likely is that the "truth" for many subjects is represented way more than fiction and when there is objective truth it's consistently represented in similar way. On the other hand there are many variations of "fiction" for the same subject.

They can and we have definitive proof. When we tune LLM models with reinforcement learning the models end up hallucinating less and becoming more reliable. Basically in a nut shell we reward the model when telling the truth and punish it when it’s not.

So think of it like this, to create the model we use terabytes of data. Then we do RL which is probably less than one percent of additional data involved in the initial training.

The change in the model is that reliability is increased and hallucinations are reduced at a far greater rate than one percent. So much so that modern models can be used for agentic tasks.

How can less than one percent of reinforcement training get the model to tell the truth greater than one percent of the time?

The answer is obvious. It ALREADY knew the truth. There’s no other logical way to explain this. The LLM in its original state just predicts text but it doesn’t care about truth or the kind of answer you want. With a little bit of reinforcement it suddenly does much better.

It’s not a perfect process and reinforcement learning often causes the model to be deceptive an not necessarily tell the truth but it more gives an answer that may seem like the truth or an answer that the trainer wants to hear. In general though we can measurably see a difference in truthfulness and reliability to an extent far greater than the data involved in training and that is logical proof it knows the difference.

Additionally while I say it knows the truth already this is likely more of a blurry line. Even humans don’t fully know the truth so my claim here is that an LLM knows the truth to a certain extent. It can be wildly off for certain things but in general it knows and this “knowing” has to be coaxed out of the model through RL.

Keep in mind the LLM is just auto trained on reams and reams of data. That training is massive. Reinforcement training is done on a human basis. A human must rate the answers so it is significantly less.

  • > The answer is obvious. It ALREADY knew the truth. There’s no other logical way to explain this.

    I can think of several offhand.

    1. The effect was never real, you've just convinced yourself it is because you want it to be, ie you Clever Hans'd yourself.

    2. The effect is an artifact of how you measure "truth" and disappears outside that context ("It can be wildly off for certain things")

    3. The effect was completely fabricated and is the result of fraud.

    If you want to convince me that "I threatened a statistical model with a stick and it somehow got more accurate, therefore it's both intelligent and lying" is true, I need a lot less breathless overcredulity and a lot more "I have actively tried to disprove this result, here's what I found"

    • You asked for something concrete, so I’ll anchor every claim to either documented results or directly observable training mechanics.

      First, the claim that RLHF materially reduces hallucinations and increases factual accuracy is not anecdotal. It shows up quantitatively in benchmarks designed to measure this exact thing, such as TruthfulQA, Natural Questions, and fact verification datasets like FEVER. Base models and RL-tuned models share the same architecture and almost identical weights, yet the RL-tuned versions score substantially higher. These benchmarks are external to the reward model and can be run independently.

      Second, the reinforcement signal itself does not contain factual information. This is a property of how RLHF works. Human raters provide preference comparisons or scores, and the reward model outputs a single scalar. There are no facts, explanations, or world models being injected. From an information perspective, this signal has extremely low bandwidth compared to pretraining.

      Third, the scale difference is documented by every group that has published training details. Pretraining consumes trillions of tokens. RLHF uses on the order of tens or hundreds of thousands of human judgments. Even generous estimates put it well under one percent of the total training signal. This is not controversial.

      Fourth, the improvement generalizes beyond the reward distribution. RL-tuned models perform better on prompts, domains, and benchmarks that were not part of the preference data and are evaluated automatically rather than by humans. If this were a Clever Hans effect or evaluator bias, performance would collapse when the reward model is not in the loop. It does not.

      Fifth, the gains are not confined to a single definition of “truth.” They appear simultaneously in question answering accuracy, contradiction detection, multi-step reasoning, tool use success, and agent task completion rates. These are different evaluation mechanisms. The only common factor is that the model must internally distinguish correct from incorrect world states.

      Finally, reinforcement learning cannot plausibly inject new factual structure at scale. This follows from gradient dynamics. RLHF biases which internal activations are favored, it does not have the capacity to encode millions of correlated facts about the world when the signal itself contains none of that information. This is why the literature consistently frames RLHF as behavior shaping or alignment, not knowledge acquisition.

      Given those facts, the conclusion is not rhetorical. If a tiny, low-bandwidth, non-factual signal produces large, general improvements in factual reliability, then the information enabling those improvements must already exist in the pretrained model. Reinforcement learning is selecting among latent representations, not creating them.

      You can object to calling this “knowing the truth,” but that’s a semantic move, not a substantive one. A system that internally represents distinctions that reliably track true versus false statements across domains, and can be biased to express those distinctions more consistently, functionally encodes truth.

      Your three alternatives don’t survive contact with this. Clever Hans fails because the effect generalizes. Measurement artifact fails because multiple independent metrics move together. Fraud fails because these results are reproduced across competing labs, companies, and open-source implementations.

      If you think this is still wrong, the next step isn’t skepticism in the abstract. It’s to name a concrete alternative mechanism that is compatible with the documented training process and observed generalization. Without that, the position you’re defending isn’t cautious, it’s incoherent.