Comment by gbnwl

2 days ago

So I can tell you don’t use these tools, or at least much, because at the speed of development with them you’ll be knee deep in tech debt in a day, not a month, but as a corollary can have the same agentic coding tools undergo the equivalent of weeks of addressing tech debt the next day. Well, I think this applies to greenfield AI-first oriented projects that work this way from the get go and with few humans in the loop (human to human communication definitely becomes the rate limiting step). But I imagine that’s not the nature of your work.

Yes if I went hard on something greenfield I'm sure I'll be knee deep in tech debt in less than a day.

That being said, given the quality of code these things produce, I just don't see that ever stopping being the case. These things require a lot of supervision and at some point you are spending more time asking for revisions than just writing it yourself.

There's a world of difference between an MPV which, in the right domain, you can get done much faster now, and a finished product.

I think you missed the your parent post's phrase "in the specific areas _I_ work in" ... LLMs are a lot better at crud and boilerplate than novel hardware interfaces and a bunch of other domains.

  • But why would it take a month to generate significant tech debt in novel domains, it would accrue even faster then right? The main idea I wanted to get across is that iteration speed is much faster so what's "tech debt" in the first pass, can be addressed much faster in future passes, which will happen on the order of days rather than sprints in the older paradigm. Yes the first iterations will have a bunch of issues but if you keep your hands on the controller you can get things to a decent state quickly. I think one of the biggest gaps I see in devs using these tools is what they do after the first pass.

    Also, even for novel domains, using tools like deep research and the ability of these tools to straight up search through the internet, including public repos during the planning phase (you should be planning first before implementing right? You're not just opening a window and asking in a few sentences for a vaguely defined final product I hope) is a huge level up.

    If there are repos, papers, articles, etc of your novel domain out there, there's a path to a successful research -> plan -> implement -> iterate path out there imo, especially when you get better at giving the tools ways to evaluate their own results, rather than going back and forth yourself for hours telling them "no, this part is wrong, no now this part is wrong, etc etc"