Comment by zokier

19 hours ago

If you have tons of datapoints, one cool trick is to do intensity modulation of the graph instead of simple "binary" display. Basically for each pixel you'd count how many datapoints it covers and map that value to color/brightness of that pixel. That way you can visually make out much more detail about the data.

In electronics world this is what "digital phosphor" etc does in oscilloscopes, which started out as just emulating analog scopes. Some examples are visible here https://www.hit.bme.hu/~papay/edu/DSOdisp/gradient.htm

Great suggestion - density mapping is a really effective technique for overplotted data. Instead of drawing 1M points where most overlap, you're essentially rendering a heatmap of point concentration. WebGPU compute shaders would be perfect for this - bin the points into a grid, count per cell, then render intensity. Could even do it in a single pass. I've been thinking about this for scatter plots especially, where you might have clusters that just look like solid blobs at full zoom-out. A density mode would reveal the structure. Added to the ideas list - thanks for the suggestion!

  • You don't need webgpu for that. It's a standard vertex shader -> fragment shader pass with the blending mode set to addition.

    • Drawing lots of single pixels with alpha blending is probably one of the least efficient ways to use the rasterizer though. A good compute shader implementation would be substantially faster.

      5 replies →

    • That works if more overdraw = more intensity is all you care about, and may very well be good enough for many kinds of charts. But with heat map plots one usually wants a proper mapping of some intensity domain to a color map and a legend with a color gradient that tells you which color represents which value. Which requires binning, counting per bin, and determining the min and max values.

      2 replies →

That digital phosphor effect is fascinating! As someone who works frequently with DSP and occasionally with analogue signals, it's incredible to see how you can pull out the carrier/modulation just by looking at (effectively) a moving average. It's also interesting to see just how much they have to do behind the scenes to emulate a fairly simple physical effect.

agreed, heatmaps with logarithmic cell intensity are the way to go for massive datasets in things like 10,000-series line charts and scatter plots. you can generally drill downward from these, as needed.